Stable numerical evaluation of multi-degree B-splines

نویسندگان

چکیده

Multi-degree splines are piecewise polynomial functions having sections of different degrees. They offer significant advantages over the classical uniform-degree framework, as they allow for modeling complex geometries with fewer degrees freedom and, at same time, a more efficient engineering analysis. Moreover possess set basis similar properties to standard B-splines. In this paper we develop an algorithm evaluation multi-degree B-splines, which, unlike previous approaches, is numerically stable. The proposed method consists in explicitly constructing mapping between known and B-spline space interest, exploiting fact that two bases related by sequence knot insertion and/or degree elevation steps performing only stable operations. addition theoretically justifying stability algorithm, will illustrate its performance through numerical experiments serve us demonstrate excellent behavior comparison existing methods, some cases, suffer from apparent problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of functional integral equations by using B-splines

This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.

متن کامل

Knot intervals and multi-degree splines

This paper studies the merits of using knot interval notation for B-spline curves, and presents formulae in terms of knot intervals for common B-spline operations such as knot insertion, differentiation, and degree elevation. Using knot interval notation, the paper introduces MD-splines, which are B-spline-like curves that are comprised of polynomial segments of various degrees (MD stands for “...

متن کامل

The Stable Evaluation of Multivariate Simplex Splines

This paper gives a general method for the stable evaluation of multivariate simplex splines, based on the well-known recurrence relation of Micchelli [12]. This paper deals with two problems which arise in the implementation of the recurrence relation. First, the coefficients in the recurrence are shown to be efficiently computable via the dual simplex method of linear programminig. Secondly, t...

متن کامل

numerical solution of functional integral equations by using b-splines

this paper describes an approximating solution, based on lagrange interpolation and spline functions, to treat functional integral equations of fredholm type and volterra type. this method can be extended to functional di erential and integro-di erential equations. for showing eciency of the method we give some numerical examples.

متن کامل

Non-uniform subdivision for B-splines of arbitrary degree

We present an efficient algorithm for subdividing non-uniform B-splines of arbitrary degree in a manner similar to the Lane-Riesenfeld subdivision algorithm for uniform Bsplines of arbitrary degree. Our algorithm consists of doubling the control points followed by d rounds of non-uniform averaging similar to the d rounds of uniform averaging in the Lane-Riesenfeld algorithm for uniform B-spline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2022

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2021.113743